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Influence of Temperature Gradients 
on Velocity Profiles and Separation Parameters 
in Thermal Field-Flow Fractionation 

JUDY J.  GUNDERSON, KARIN D. CALDWELL, 
and J. CALVIN GIDDINGS 
DEPARTMENT OF CHEMISTRY 
UNIVERSITY OF UTAH 
SALT LAKE CITY. UTAH 84 1 12 

Abstract 

The form of the asymmetrical velocity profile present in thermal field-flow 
fractionation is investigated. A theoretical treatment of retention and nonequilibrium 
peak broadening is given for an exponential concentration profile combined with the 
asymmetrical velocity profile. The different consequences of the symmetrical and 
asymmetrical velocity profiles are discussed. 

INTRODUCTION 

Field-flow fractionation ( F F F )  is a separation technique which is based on 
the exposure of a sample to the combined effects of an external field applied 
perpendicular to the axis of a fractionation channel and the axial flow of 
carrier liquid through the open channel. The field interacts with the various 
components of the sample, causing their migration toward the channel wall. 
The carrier flows laminarly with the fastest flowlines located in or near the 
middle of the parallel plate-type channel, and sluggish flow in the vicinity of 
the walls. Species which are forced to concentrate near the wall due to a 
strong interaction with the field will move downstream with relatively slow 
velocities, thus being retained longer than those species with weaker field 
interactions. 

FFF retention therefore depends not only on the applied field but also on 
the distribution of flow velocities in the channel, i.e., the flow velocity profile. 

Copyright 01985 b y  Marcel Dekker, Inc. 
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668 GUNDERSON, CALDWELL, AND GlDDlNGS 

F o r  fields such as electrical (I)  or sedimentation ( 2 ) ,  one may safely assume 
the velocity profile to be parabolic with the maximum flow velocity found 
exactly at the midpoint of the channel. This assumption is not correct in the 
case of thermal FFF, which relies on rather steep temperature gradients to 
achieve separation. Since the viscosity of most carrier liquids is a strong 
function of the temperature, and thus of position in the channel, the velocity 
profile will no longer be symmetrical around the center of the channel. 

In the initial development of thermal FFF theory (3) ,  the flow profile was 
treated as parabolic; later refinements introduced a simple temperature 
correction to the viscosity which, although treated inaccurately, permitted 
exploration of the effects that a skewed velocity profile has on retention ( 4 ) .  
An exact solution to the equation of motion for laminar flow between infinite 
parallel plates of different temperatures was presented by Westerman-Clark 
(5) .  In solving the equation he assumes a linear temperature gradient 
between the plates and an exponential dependence of the viscosity on 
temperature. The practical application of his derivation is hindered due to the 
presence of an exponential integral in his solution. In the present work we 
will derive an exact and implicit solution employing slightly more general 
assumptions based on appropriate series expansion which are stated in the 
text. The resulting solution will lend itself to convenient evaluation under a 
variety of experimental conditions. W e  will then find general equations 
describing retention parameters and apply them to specific solvents and 
temperature differentials which are frequently used in thermal FFF. 

The refinement of theories for retention and plate height will ultimately 
obviate the need for calibration curves which are employed whenever the 
thermal FFF technique is used for polymer characterization. It will instead 
permit direct first principles interpretation of observed fractograms in terms 
of relevant physical parameters, i.e., diffusivity. thermal diffusivity, and 
molecular weight of the sample. 

THEORY 

Under the assumption of' uniform flow in the longitudinal dimension of an 
infinite parallel plate channel, the equation of motion is of the form ( 5 )  

where v ( x )  is the velocity at position x in the channel, ~ ( x )  is the position- 
dependent liquid viscosity, and Ap/L.  a positive quantity, is the pressure 
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THERMAL FIELD-FLOW FRACTIONATION 669 

increment per unit length of the channel. The velocity profile is found, 
through integration, to be 

where a and 6' are constants of integration which may be evaluated from the 
boundary conditions specifying zero velocity at the two channel walls, i.e., at 
x = 0 and x = w. This results in the following equation for the generalized 
velocity profile: 

- AP 
v ( x )  = - 

L 

The basis for fractionation in thermal FFF is the existence of a 
temperature gradient across the channel. Since liquid viscosities q(T)  are 
strongly temperature dependent, the temperature profile gives a position 
dependence to the viscosity expressed as q(x). In order to determine ~ ( x )  and 
thus solve Eq. (3) ,  we must do two things: we must first determine the 
temperature dependence of the viscosity, or more appropriately its inverse, 
the fluidity, and we must second determine the form of the temperature 
profile so that the temperature dependence q(T)  can be converted into the 
distance dependence ~ ( x ) .  

The temperature dependence of fluidity is readily accounted for by fitting 
fluidity data (6-11) to a polynomial function. Experimental data for 
ethylbenzene, tetrahydrofuran, and 1,2-dichloroethane were found to fit a 
cubic equation very well over the temperature ranges of interest (Fig. 1): 

1 

?l 
- = a o  -I- a , T +  a,T2 + a,T3 (4) 

The temperature dependence of the fluidity has often been expressed as an 
exponential ( I I ) ,  but the exponential fit is not as good as the above cubic 
expression over the temperature range of interest here. and is not as 
convenient for integration. 

In the past a linear temperature gradient across the channel has often been 
assumed ( 4 ) .  This is only correct to a first approximation since the 
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670 GUNDERSON, CALDWELL, AND GlDDlNGS 
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FIG. 1. Comparison of tluidity predicted by Eq. (4) and experinicntal values: ( A )  Ref'. 6. (U) 
Ref. 7 ,  (0)  Ref. 8. ( 0 )  Rcf. 9, (B) Ref. 10, (*) Rcf. 1 1 .  Equations for the s~lvents  are: 

Ethylbenzene:-= -6059.42 -t 47.58887- O.12S25T2 + 1.73452 X lop4 T 3  
1 

rl 

1 
Tetrahydrofuran:- = 7622.73 - 88.9325T-t 0.33440T2 - 3.25866 X loT4 7'3 

7l 

1 

rl 
1.2-DichIoroethane:-= 679.57 - 11.83247+4.39798 X T2 i 8.26069 X lop4 T3 

temperature gradient at any point is a function of the thermal conductivity of 
the liquid, and the thermal conductivity, in turn, varies with the temperature. 
This will result in a nonlinear temperature profile. The thermal conductivity 
of nonpolar liquids may be approximated by the expression (11, 12) 

where K is the thermal conductivity at temperature T and K~ is the value of h: 
at the cold wall temperature T,. We will assume dK/dT to be constant over 
our working temperature ranges (11, 12). The temperature gradient may then 
be written as (12) 
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THERMAL FIELD-FLOW FRACTIONATION 671 

where the constant q (formerly A in Ref. 12) is the heat flow through a unit 
area of the system; for a given set of conditions, q is determined as (12, 
13) 

where AT is the temperature drop across the channel and S is a constant. 
Through manipulation of Eqs. (6) and (7), the temperature at any position in 
the channel can be determined by the equation (13) 

-- 
K,  dT 

(8)  
Although the equation is an exact solution for the temperature profile based 
on Eq. (51, it is a complicated function o f x .  If we substituted this equation 
into Eq.  (4) so as to have the fluidity as a function of x, the velocity 
expression would become quite cumbersome. Instead, we will seek a simpler 
approximation for the temperature profile. We start by expanding the 
temperature in a Taylor’s series about the cold wall (x = 0): 

(9 )  

The temperature gradient dTldx has been described in Eq. (6) and is 
evaluated at the cold wall as 

From Eq. (6) we also determine the higher-order derivatives at the cold 
wall: 
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67 2 GUNDERSON, CALDWELL, AND GlDDlNGS 

Assuming d 4 d T  to be a constant and substituting Eqs. (9a), (9b), and ( 9 c )  
into Eq. (9), we get the following equation for the temperature profile: 

I ( X ) - E + S ( Z ) -  - 1 - s2 (%)(:Ti- 1 2 s3 ($J (:I 
2 K,. 3 Kc 

where the equation is written in terms of the reduced parameter x I w .  
Comparison of Eq. ( 10) to Eq. (8) (see Table 1 and Fig. 2 )  shows that the 
cubic expansion is a good approximation to the exact solution for the 
conditions and heat fluxes of interest in this work. 

By introducing Eq. (10) into Eq. (4), we have a polynomial relationship 
for fluidity in terms of channel position. This polynomial is truncated after 

TABLE 1 
Evaluation of Approximatc Relationships between Temperature T and Reduced Position 

Coordinate XIM' for EthylbenLene at T,. = 20°C and A T =  IOO'C. 

Y 

b1' 
T , = T c , - t S -  

0.0 20.0 20.0 20.0 20.0 
0.1 29. I 29.2 29.2 29.2 
0.2 38.2 38.5 38.5 38.5 
0.3 41.2 41.9 41.9 41.9 
0.5 65.4 67.3 67.4 61.5 
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THERMAL FIELD-FLOW FRACTIONATION 673 

four terms. The maximum error in this equation, 3% for ethylbenzene at 
AT = 100°C, occurs at the hot wall and will perturb the velocity profile only 
slightly. In FFF the field tends to concentrate the sample molecules in the 
cold wall region and in this region, i.e., 0 SXIW 5 0.5, the four term 
polynomial expression introduces errors of less than 0.25% in the fluidity. 
The fluidity as a function of channel position is 

where 

l 

b, = a 3 T ;  + a2T:  + a ,T, + a ,  
b l  = (3Tfa3 + 2T,a2 4- a l ) S  

8.0 

6.0 - 

4.0 - 

2.0 - 

0 
0 0.2 0.4 0.6 0.8 I .0 

CHANNEL POSITION, $ 
F I G .  2. Differences between the exact solution based on Eq. ( 5 ) .  Tcomp, and various 
approximate temperatures, Tl. T2, T3, given in Table 1, as a function of reduced channel 

position. The temperatures are calculated for ethylbenzene at T, = 20°C and AT= 100°C. 
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674 GUNDERSON, CALDWELL, AND GlDDlNGS 

3 1 dtc 1 dK 

2 K, dT K,  dT 
-- Tf- --a3 - T,- - 

b,= [T: (; 1 ~ ~ u ] - 3 T , -  dK 1 - u 3 + a 3 + - T ,  d K  2 
K, dT 3 

1 d K  1 drc 

K, dT 3 K,  d T  
-- - a ,  +' (- - Jal Is3 

Combining Eqs. (1 I )  and (31, and performing the necessary integrations, 
we get the velocity profile 

where 

We will rewrite the equation for simplicity as 

In order to compare velocity profiles generated under different experi- 
mental conditions, we need to normalize the velocity profile by dividing v(x)  
by its average value <v(x)> which is found to be 
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T H E R M A L  FIELD-FLOW FRACTIONATION 675 

The distortion of the velocity profile, which arises from the thermal 
gradient and its resulting distribution of viscosities, is demonstrated in Fig. 3. 
The isoviscous case is compared to Eq. (22) for ethylbenzene with 
T,  = 20°C and A T =  100°C. The decreased velocity near the cold wall is 
due to the fact that the viscosity is highest at that point. 

In the limit of no temperature dependence in the viscosity (bi = 0 for i 2 
I) ,  the normalized velocity profile takes the symmetrical parabolic form 

used in the development of the general theory of FFF (3): 

RETENTION EQUATION 

As in chromatography, the retention parameter R in FFF is defined as the 
ratio of the solute zonal velocity to the average velocity of the solvent. This 
ratio may be expressed as 

3 
\ X 

2- 
0 
c_ 
m 
0 a 
_I 
W z 
2 

0 
P 

I .c 

0.8 

0.6 

0.4 

0.2 

r 

<C(X)U(X)> 

<c(x)><v(x)> 
R =  

1 I I 

Ethylbenzene 
) 

t lsoviscous c- 

"E 

0 0.3 0.6 0.9 1.2 1.5 
RELATIVE VELOCITY, v(x)/(v(x)) 

1 

1 

FIG. 3 .  Asymmetry of the velocity profile for ethylbenzene at T, = 20°C and A T =  100°C 
according to Eq. (13). The isoviscous symmetrical velocity profile (Eq. 15) is shown for 

comparison. 
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676 GUNDERSON, CALDWELL, A N D  GlDDlNGS 

where c is the solute concentration and the angled parentheses denote cross- 
sectional averages. The concentration profile is determined by examining the 
flux equation for a solute in a thermal gradient (4, 14): 

J, = -D [$ + c (+ + 

where D is the diffusion coefficient, y is the cubic coefficient of thermal 
expansion, and N is the thermal diffusion factor. Letting J, equal zero under 
the steady-state assumption results in the equation 

1 dc d T  
c dx 

In order to find the concentration distribution c(x) as a function of position 
coordinate x, it is convenient to make some simplifying assumptions about 
the terms on the right-hand side of the equation. First, we will consider the 
two terms within the parentheses, crlT and y. Since y is a small term 
compared to a/T,  we will neglect it. The right-hand side of the equation then 
becomes the product ( a / T )  X (dTldx); it is the temperature dependence of 
this product with which we will be concerned. Each of the two terms in the 
product is temperature dependent; a/T decreases with increasing tempera- 
ture (12, 13) whereas di"/dx increases with increasing temperature due to its 
inverse dependence on thermal conductivity (Eq. 6 ) .  Although the terms in 
the product will compensate each other to some extent, alT has the stronger 
temperature dependence of the two. The temperature dependence of each of 
the terms and of the product is shown in Fig. 3. While the temperature 
dependence of the product is significant, the temperature range over which 
the solute zone extends is not large. Thus, only a small portion of the 
temperature range shown in Fig. 4 is experienced by solute molecules. For 
example, in a highly unfavorable case, a mildly retained sample ( R  = 0.5) in 
ethylbenzene with a cold wall temperature T, of 20°C and a hot wall 
temperature of 120°C is distributed such that 85% of the sample is spread 
over a 24.6"C range. This difference would result in a product term that 
varied by 17% over the 24.6"C range. At  the other end of the spectrum a 
highly retained sample (R = 0.1) under the same conditions, except with a 
hot wall temperature of 45"C, is distributed such that 85% of the sample is 
spread over less than a 1°C range. This difference would result in a product 
term that varied by 0.75%. Thus we may assume the product on the right- 
hand side of Eq. ( 18) to be temperature independent without incurring a large 
error for moderately or highly retained species. 
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THERMAL FIELD-FLOW FRACTIONATION 677 

1.25/ 1 I I I I 

TEMPERATURE ( K )  

FIG. 4. Temperature dependence of ( a / T ) ,  (dTldx),  and (crlT)(dT/dx) normalized to the values 
at 275 K for ethylbenzene at T, = 20°C and A T =  100°C. 

Upon solving the differential equation, the resulting concentration profile 
is of the form 

c(x)  = co exp (+) 
where co is the concentration at the cold wall and constant 111, where I 
approximates the mean thickness of the zone, is defined by 

1 d T  
I 

The cross-sectional average concentration in the zone becomes 

where X is the dimensionless retention parameter defined as Ilw. 

we get 
Inserting Eqs. (13), (14), (19), and (21) into the expression for R (Eq. 16) 
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678 GUNDERSON, CALDWELL, AND GlDDlNGS 

which, in the limit X - 0, assumes the form 

The retention determined from Eq. (22) is greater than that corresponding to 
a parabolic velocity profile (isoviscous case), as illustrated by the specific 
case shown in Fig. 5 .  This reflects the reduced flow velocity near the cold 
wall. 

One of the goals of thermal FFF is the determination of the thermal 
diffusion parameters from observations of retention collected for various 
macromolecules. As shown in Eq. (22), we have a relationship between the 

R 

T -  T -  1.0 
- 

\ 

/ / -9-= 
0 . ~  0.6 0.4 I I 

0.2 I 

, 

0 2. 
0 0.2 0.4 0.6 0.8 1.0 

x 

1.0-- r T -  T 

T, = 2 0 ° C  
AT= I 0 0 " C  I 

0.8 - 

1 

0.2 - 

1 - L  - -1-- -1 
0 0.2 0.4 0.6 0.8 1.0 

x 
~ I O .  5 .  Retention ratio K as a function of for the ~sov~scous system (Ref. 4 ,  Eq. 5 )  and 

ethylbenzene at 7c = 20°C and A T =  100°C according to Eq. (22). 
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THERMAL FIELD-FLOW FRACTIONATION 679 

observed retention R and A; Eq. (20) in turn relates I = XW to a. Thus, if we 
measure the retention ratio for a specific material, we may determine its 
thermal diffusion factor a .  This relationship between R and (Y is illustrated in 
Fig. 6 for ethylbenzene with T,. = 20°C and AT= 100°C. 

ZONE BROADENING 

A perturbation of the parabolic velocity profile affects not only the zonal 
retention but band broadening as well. The nonequilibrium contribution to 
the plate height expression in FFF has been treated in detail for the case of 
unperturbed parabolic flow (15-17) and has the form 

where the parameter x is a complicated function of X or R (15, 16). An 
approximation for x has been developed by Martin et al. ( I  7); it is based on a 
third-degree polynomial expression for the velocity profile with one adjust- 
able parameter v: 

- = 6  U [ ( I  + v )  ( ? ) - ( I  + 3 v )  (<)'+Zv (t)i] 
( U >  W 

0 50 100 150 200 
THERMAL DIFFUSION FACTOR. (Y 

FIG. 6. Dependence of R on the thermal diffusion factor (Y for ethylbenzene at T, = 20°C and 
A T =  100°C. 
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680 GUNDERSON, CALDWELL, AND GlDDlNGS 

The resulting equation for x is of the form ( I  7)  

where 

F = 2AJ 6( 1 + I!) - (1/X)  - ( A / X )  + 36vX2 

- 6X( 1 + 6v) 4- 18Xe-””( I + IOvX)] 

+ 72X2[( I 4- L J ) ~  - lo (  1 4- 4v + 3v2)X 

+4(7  4- 691) + 90v2)Xz - 67214 I + 3 v ) X 3  

+ 4464v2X4] - 72X2e-”’[7 - 2v + v 2  
+ 2 ( 5  - 6811 + 15u’)X + 4(7  - 6911 + 180vz)X2 

- 672v( 1 - 3u)X’ + 4464v2X4J (25a )  

and 

In order to examine the effect on band broadening due to a thermally 
distortcd velocity profile, we gcnerated a set of data from Eq. (1 3) describing 
the velocity profile of ethylbenzene with T, = 20°C and A T =  100°C. We 
then fit this data to a third-degree polynomial by means of a least-squares 
analysis. As seen in Fig. 7, the fit is quite good. This is also indicated by an 
error of only 3.3% in the slope of the third-degree polynomial at the cold 
wall. This precision may be improved by performing a weighted fit of the data 
near the cold wall. 

The expression for the nonequilibrium coefficient x given by Eq. (25) may 
now be evaluated and compared to the isoviscous case. The comparison is 
shown in Fig. 8. For a mildly retained material the skewed velocity profile 
has a larger contribution to band broadening than the parabolic profile 
whereas for a highly retained material the skewed velocity profile has a 
smaller contribution to band broadening than the parabolic profile (not 
obvious in Fig. 8). This apparent contradiction arises due to the influence the 
slope of the velocity profile has on band broadening. The steeper the velocity 
profile is over the area of the solute zone, the greater the band broadening of 
the zone. At the cold wall the parabolic velocity profile is steeper than the 
skewed profile. Thus a highly retained sample experiences greater band 
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THERMAL FIELD-FLOW FRACTIONATION 68 1 

FIG. 7.  The velocity profile according to Eq.  ( 1  3)  and the cubic approximation to it (Eq.  24) for 
ethylbenzene at T, = 20°C and A T =  100°C. 

0.024 

0.018 

X 

0.012 

0.006 

0 

. 
!'----- _ _ _  
'--- lsoviscous 

--i.-_L.--_L---i- 

0 0.2 0.4 0.6 0.8 1.0 1.2 
h 

FIG. 8. Dependence ofx on X for the isoviscous system (Rcl.. 16. Eq. 26) and for cthylbenzenc 
at T, = 20°C and A T =  100'C ( E q .  25). 
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682 GUNDERSON, CALDWELL, AND GlDDlNGS 

broadening in a parabolic flow profile than in the skewed profile. For a lesser 
retained material the solute zone will begin extending into flow regions in the 
channel where the distorted flow profile has the steeper velocity gradient. 
Consequently, the distorted velocity profile will increase the band broad- 
ening of a mildly retained material. 

SUMMARY AND CONCLUSIONS 

The temperature profile across a thermal FFF channel has been shown to 
be accurately described by a polynomial in position coordinate x, where x 
represents the distance from the cold wall. This profile is based largely on 
empirical relationships between temperature and viscosity for various 
solvents. These relationships make it possible to express the inverse 
viscosities, i.e., the fluidities, of the solvents as functions of position 
coordinate x in the channel. The  velocity profile across the channel was then 
found as the solution to the equation of motion of the fluid between infinite 
parallel plates. The  resulting expression for the velocity profile is a 
polynomial in x, where the coefficients are evaluated in terms of known 
experimental parameters. This evaluation may be carried out by simple 
computer routines. (Information on computer routines is available from the 
authors.) The  distortion in the velocity profile induced by the temperature 
gradient is demonstrated graphically for a sct of typical experimental 
conditions. 

The impact of the skewed velocity profile on retention was then examined. 
The  solute was assumed to be exponentially distributed with respect to the 
cold wall during fractionation. Although the exponential expression is not 
exact, it is acceptable for moderately or highly retained species. Thus it was 
possible to estimate the effect of the skewed velocity profile on retention for 
different experimental conditions. The impact of this correction is illustrated 
by comparison with retention calculated for the parabolic velocity profile. 
The  parabolic profile is characteristic of most forms of FFF. 

The  aim of sample characterizatior~ in FFF is to correctly describe the 
field-induced solute distribution in the channel, since this distribution is 
uniquely determined by the physical properties of the sample. In order to 
accurately relate an experimentally observed retention to the appropriate 
sample distribution, one must have access to an accurate velocity profile. It is 
this primary need which prompted the current study. W e  have also examined 
the implications of the skewed velocity profile on nonequilibrium zone 
broadening in the thermal FFF channel. 
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It will be the goal of future work to more accurately describe the sample 
distribution in a channel under the influence of a temperature gradient. This 
should provide an improved relationship between experimental retention and 
the thermal diffusion parameters for the sample. 
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