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Influence of Temperature Gradients
on Velocity Profiles and Separation Parameters
in Thermal Field-Flow Fractionation

JUDY J. GUNDERSON, KARIN D. CALDWELL,
and J. CALVIN GIDDINGS

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF UTAH
SALT LAKE CITY, UTAH 84112

Abstract

The form of the asymmetrical velocity profile present in thermal field-flow
fractionation is investigated. A theoretical treatment of retention and nonequilibrium
peak broadening is given for an exponential concentration profile combined with the
asymmetrical velocity profile. The different consequences of the symmetrical and
asymmetrical velocity profiles are discussed.

INTRODUCTION

Field-flow fractionation (FFF) is a separation technique which is based on
the exposure of a sample to the combined effects of an external field applied
perpendicular to the axis of a fractionation channel and the axial flow of
carrier liquid through the open channel. The field interacts with the various
components of the sample, causing their migration toward the channel wall.
The carrier flows laminarly with the fastest flowlines located in or near the
middle of the parallel plate-type channel, and sluggish flow in the vicinity of
the walls. Species which are forced to concentrate near the wall due to a
strong interaction with the field will move downstream with relatively slow
velocities, thus being retained longer than those species with weaker field
interactions.

FFF retention therefore depends not only on the applied field but also on
the distribution of flow velocities in the channel, i.e., the flow velocity profile.

667

Copyright ©1985 by Marcel Dekker, Inc. 0149-6395/84/1910-0667$3.50/0



13: 27 25 January 2011

Downl oaded At:
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For fields such as electrical (1) or sedimentation (2), one may safely assume
the velocity profile to be parabolic with the maximum flow velocity found
exactly at the midpoint of the channel. This assumption is not correct in the
case of thermal FFF, which relies on rather steep temperature gradients to
achieve separation. Since the viscosity of most carrier liquids is a strong
function of the temperature, and thus of position in the channel, the velocity
profile will no longer be symmetrical around the center of the channel.

In the initial development of thermal FFF theory (3), the flow profile was
treated as parabolic; later refinements introduced a simple temperature
correction to the viscosity which, although treated inaccurately, permitted
exploration of the effects that a skewed velocity profile has on retention (4).
An exact solution to the equation of motion for laminar flow between infinite
parallel plates of different temperatures was presented by Westerman-Clark
(5). In solving the equation he assumes a linear temperature gradient
between the plates and an exponential dependence of the viscosity on
temperature. The practical application of his derivation is hindered due to the
presence of an exponential integral in his solution. In the present work we
will derive an exact and implicit solution employing slightly more general
assumptions based on appropriate series expansion which are stated in the
text. The resulting solution will lend itself to convenient evaluation under a
variety of experimental conditions. We will then find general equations
describing retention parameters and apply them to specific solvents and
temperature differentials which are frequently used in thermal FFF.

The refinement of theories for retention and plate height will ultimately
obviate the need for calibration curves which are employed whenever the
thermal FFF technique is used for polymer characterization. It will instead
permit direct first principles interpretation of observed fractograms in terms
of relevant physical parameters, i.e., diffusivity. thermal diffusivity, and
molecular weight of the sample.

THEORY

Under the assumption of uniform flow in the longitudinal dimension of an
infinite parallel plate channel, the equation of motion is of the form (5)

d’ v(x) N dn(x) dv(x) _—Ap

3 (1)
dx dx dx L

n{x)

where v(x) is the velocity at position x in the channel, n(x) is the position-
dependent liquid viscosity, and Ap/L, a positive quantity, is the pressure
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increment per unit length of the channel. The velocity profile is found,
through integration, to be

_ —Ap x X EE |
v(x)~——L [j(; n(x)dx+0[ n(x)dx%—ail (2)

where a and 8 are constants of integration which may be evaluated from the
boundary conditions specifying zero velocity at the two channel walls, i.e., at
x =0 and x = w. This results in the following equation for the generalized

velocity profile:
v x
(I n{x) dx)
vy ==L | [ - (j
L ° n(x) <f 1 ) ° n(x)
dx

The basis for fractionation in thermal FFF is the existence of a
temperature gradient across the channel. Since liquid viscosities n(7") are
strongly temperature dependent, the temperature profile gives a position
dependence to the viscosity expressed as 7(x). In order to determine n(x) and
thus solve Eq. (3), we must do two things: we must first determine the
temperature dependence of the viscosity, or more appropriately its inverse,
the fluidity, and we must second determine the form of the temperature
profile so that the temperature dependence n(7") can be converted into the
distance dependence n(x).

The temperature dependence of fluidity is readily accounted for by fitting
fluidity data (6-11) to a polynomial function. Experimental data for
ethylbenzene, tetrahydrofuran, and 1,2-dichloroethane were found to fit a
cubic equation very well over the temperature ranges of interest (Fig. 1):

dx> (3)

n(x)

1
n

The temperature dependence of the fluidity has often been expressed as an
exponential (/7), but the exponential fit is not as good as the above cubic
expression over the temperature range of interest here, and is not as
convenient for integration,

In the past a linear temperature gradient across the channel has often been
assumed (4). This is only correct to a first approximation since the
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F1G. 1. Comparison of fluidity predicted by Eq. (4) and experimental values: (A) Ref. 6. ({)
Ref. 7, (O) Ref. 8. (@) Ref. 9, (M) Ref. 10, (%) Ref. 11. Equations for the solvents are:

I
Ethylbenzenc; — = —6059.42 + 47.58887 — 0.1252572 + 1,73452 X 1074 13
n

1
Tetrahydrofuran: — = 7622.73 — 88.9325T + 0.3344072 — 3.25866 X 107413
n

1
1 .2-Dichloroethane: — = 679.57 — 11.8324T + 4.39798 X 1072 T2 + 8.26069 X 1074 T3
n

temperature gradient at any point is a function of the thermal conductivity of
the liquid, and the thermal conductivity, in turn, varies with the temperature.
This will result in a nonlinear temperature profile. The thermal conductivity
of nonpolar liquids may be approximated by the expression (11, 12)

o7 5
=t ¢) (3)

where k is the thermal conductivity at temperature T  and k, is the value of k
at the cold wall temperature 7,. We will assume dk/dT to be constant over
our working temperature ranges ({/, 12). The temperature gradient may then

be written as (/2)
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dT ¢ q
—— === (6)
dx K 1 dk
kK, |1 +— —(T'—T,)
k., dT

where the constant g (formerly 4 in Ref. /2) is the heat flow through a unit
area of the system; for a given set of conditions, g is determined as (/2
13)

q 1 1 dx (AT)? S
— =— AT+ — — =— (7)
K, w k., dT 2 w

where AT is the temperature drop across the channel and S is a constant.

Through manipulation of Eqs. (6) and (7), the temperature at any position in
the channel can be determined by the equation (13)

2x 1 dk X 1 dk ¥ 5 172
-1+ |1 +— — —— AT +— | — — |(AT)
K,

(8)

Although the equation is an exact solution for the temperature profile based
on Eq. (5), it is a complicated function of x. If we substituted this equation
into Eq. (4) so as to have the fluidity as a function of x, the velocity
expression would become quite cumbersome. Instead, we will seek a simpler
approximation for the temperature profile. We start by expanding the
temperature in a Taylor’s series about the cold wall (x = 0):

dar x [ d*T X (4T
T =T+x|{— )| +—|— ) +—{— | +
dx 2 \dxr/, 3t \dx'/,

(9)

The temperature gradient d7/dx has been described in Eq. (6) and is
evaluated at the cold wall as

(dT > q S
— | == (9a)
dx /. k. w

From Eq. (6) we also determine the higher-order derivatives at the cold
wall:
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S EIOE) -

() () () [(E) 2 (%] oo

Assuming dx/dT to be a constant and substituting Eqs. (9a), (9b), and (9c)
into Eq. (9), we get the following equation for the temperature profile:

x 1 8%/ dxk x ¥ 1 S /de V[ x Y
To=T+s|— ) == (= =)+ (- ) (=
w 2 k. \dT w 3 ki arT w

(10)

where the equation is written in terms of the reduced parameter x/w.
Comparison of Eq. (10)to Eq. (8) {see Table 1 and Fig. 2)shows that the
cubic expansion is a good approximation to the exact solution for the
conditions and heat fluxes of interest in this work.

By introducing Eq. (10) into Eq. (4), we have a polynomial relationship
for fluidity in terms of channel position. This polynomial is truncated after

TABLE 1
Evaluation of Approximatc Relationships between Temperature 7 and Reduced Position
Coordinate x/w for Ethylbenzene at T, = 20°C and AT = 100°C:

T =T.+S~
W

1§ dk x ¥
7‘2=T1———_—_ - -

2 k. \dT "

1 8% [{de ¥ [x Y
Ti=T,+— —5 | — -
ATy \ar W

Tomp Represents the Values Predicted by Eq. (8)

X

()

x/w L0 n oo 73(°C) Teomp (°C)
0.0 20.0 20.0 20.0 20.0
0.1 29.1 29.2 29.2 29.2
0.2 38.2 38.5 38.5 38.5
0.3 47.2 47.9 47.9 479

0.5 65.4 67.3 67.4 67.5
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four terms. The maximum error in this equation, 3% for ethylbenzene at
AT = 100°C, occurs at the hot wall and will perturb the velocity profile only
slightly. In FFF the field tends to concentrate the sample molecules in the
cold wall region and in this region, i.e., 0 <x/w < 0.5, the four term
polynomial expression introduces errors of less than 0.25% in the fluidity.
The fluidity as a function of channel position is

1 x x ¥ x ¥
—=by+b,—+b, | — |+ b; | — (11)
n w w w
where
by=a,T}+a,T*+a\T.+a, (11a)
b, = (3T2a;+ 2T.a, + a,)S (11b)
8.0 T
.0t
© L
i
§ |
'_U
2.0+
O T T 1 L T T T T 1
Q 0.2 0.4 0.6 0.8 1.0

CHANNEL POSITION, %

FiG. 2. Differences between the exact solution based on Eq. (5), Tomp. and various
approximate temperatures, 77, T, 73, given in Table I, as a function of reduced channel
position. The temperatures are calculated for ethylbenzene at 7. = 20°C and AT = 100°C.
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5 (3T 32 L dx 1 de 1 1 dx )52
- - T aQ ¢ a a - T
2 AT ar ® AT TRy Tar @
(11c)
, (1 de ¥ dx 1 drx
bi=|Ti\— —= |ay—3T,— ——asta;+-T. |\ — —— |a,
k, dT . dT k. dT
1 dk 1 1 dk V
—— —a,+= | — — )a, |S? (11d)
k. dT 3\« dT

Combining Egs. (11) and (3), and performing the necessary integrations,
we get the velocity profile

~Ap x 1 x ¥ 1 x Y
v(x)=—L 01707 +—2(b0+ fb,) —; +—3(b[+ #b;) ;
1 x ¥V i x v
4 w 5 w
where
b b b b b b
§=-— <—°+ﬁ +—2 +-—3>/b0+—1 +-=2 +—"~)
2 3 4 5 2 3 4

(12a)

We will rewrite the equation for simplicity as

12 (2)on (2o (2 on(2 on )]

(13)

In order to compare velocity profiles generated under different experi-
mental conditions, we need to normalize the velocity profile by dividing #(x)
by its average value <z(x)> which is found to be

“Ap T h by by R ks —Ap &k
Co(x) =—2 [—'+—i+~3+—“ +—i]: Ly

L L2 3 4 s 6 L Tty

(14)
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The distortion of the velocity profile, which arises from the thermal
gradient and its resulting distribution of viscosities, is demonstrated in Fig. 3.
The isoviscous case is compared to Eq. (12) for ethylbenzene with
T, = 20°C and AT = 100°C. The decreased velocity near the cold wall is
due to the fact that the viscosity is highest at that point.

In the limit of no temperature dependence in the viscosity (b; = 0 for i >

1), the normalized velocity profile takes the symmetrical parabolic form
used in the development of the general theory of FFF (3):

2
1&:6[1_<i>] (15)
o(x) w w

RETENTION EQUATION

As in chromatography, the retention parameter R in FFF is defined as the
ratio of the solute zonal velocity to the average velocity of the solvent. This
ratio may be expressed as

le(x)v(xp

T Ce)}o(x) (16)

T
Ethylbenzene
i T, =20%, AT=100%

0.8

o
o)

CHANNEL POSITION, x/w

“—|soviscous

.l 1 A 1

1
0.3 0.6 0.9 1.2 1.5
RELATIVE VELOCITY, v{x)/{vix))

Fi1G. 3. Asymmetry of the velocity profile for ethylbenzene at 7, = 20°C and AT = 100°C
according to Eq. (13). The isoviscous symmetrical velocity profite (Eq. 15) is shown for
comparison,
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where ¢ is the solute concentration and the angled parentheses denote cross-
sectional averages. The concentration profile is determined by examining the
flux equation for a solute in a thermal gradient (4, 74):

J D[chr (a+ )dT} (17)
T - c . -
: dx T ) ax

where D is the diffusion coefficient, y is the cubic coefficient of thermal
expansion, and « is the thermal diffusion factor. Letting J, equal zero under
the steady-state assumption results in the equation

1 de o ar
S () (18)
¢ dx

In order to find the concentration distribution ¢(x) as a function of position
coordinate x, it is convenient to make some simplifying assumptions about
the terms on the right-hand side of the equation. First, we will consider the
two terms within the parentheses, «/T and y. Since y is a small term
compared to «/T, we will neglect it. The right-hand side of the equation then
becomes the product (a/T) X (dT/dx); it is the temperature dependence of
this product with which we will be concerned. Each of the two terms in the
product is temperature dependent; a/T" decreases with increasing tempera-
ture (12, 13) whereas d7/dx increases with increasing temperature due to its
inverse dependence on thermal conductivity (Eq. 6). Although the terms in
the product will compensate each other to some extent, «/7 has the stronger
temperature dependence of the two. The temperature dependence of each of
the terms and of the product is shown in Fig. 3. While the temperature
dependence of the product is significant, the temperature range over which
the solute zone extends is not large. Thus, only a small portion of the
temperature range shown in Fig. 4 is experienced by solute molecules. For
example, in a highly unfavorable case, a mildly retained sample (R = 0.5) in
ethylbenzene with a cold wall temperature 7, of 20°C and a hot wall
temperature of 120°C is distributed such that 85% of the sample is spread
over a 24.6°C range. This difference would result in a product term that
varied by 17% over the 24.6°C range. At the other end of the spectrum a
highly retained sample (R = 0.1) under the same conditions, except with a
hot wall temperature of 45°C, is distributed such that 85% of the sample is
spread over less than a [°C range. This difference would result in a product
term that varied by 0.75%. Thus we may assume the product on the right-
hand side of Eq. (18) to be temperature independent without incurring a large
error for moderately or highly retained species.
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F1G. 4. Temperature dependence of (a/T), (dT/dx), and (a/T (dT/dx) normalized to the values
at 275 K for ethylbenzene at T, = 20°C and AT = 100°C.

Upon solving the differential equation, the resulting concentration profile
is of the form

e(x) = ¢, exp (-%x—> (19)

where ¢, is the concentration at the cold wall and constant 1//, where /
approximates the mean thickness of the zone, is defined by

1 a dT

==ty ) (20)

dx

The cross-sectional average concentration in the zone becomes
e(x) = coh(1 — e ') (21)

where A is the dimensionless retention parameter defined as //w.

Inserting Eqs. (13), (14), (19), and (21) into the expression for R (Eq. 16)
we get
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1 1 I U - .
R = [ [E h; _E————-N] +2 ith\
i h; (1 — ey L™ 7= =) =t
S+ 1)
(22)
which, in the limit A — 0, assumes the form
A
X i 1
llgl .
(i+1)

The retention determined from Eq. (22) is greater than that corresponding to
a parabolic velocity profile (isoviscous case), as illustrated by the specific
case shown in Fig. 5. This reflects the reduced flow velocity near the cold
wall.

One of the goals of thermal FFF is the determination of the thermal
diffusion parameters from observations of retention collected for various
macromolecules. As shown in Eq. (22), we have a relationship between the

- Isoviscous

o T T |
Lo \ Ethyibenzene
,/
s T, =20°C
081 / AT=100%
/
'
/
o6+ [ ]
!
R ]
1
1
041 1 -
!
1
)
02y .
0 ! L 1 ! .-
0 0.2 04 06 08 1O

A

©1G. 5. Retention ratio R as a function of A for the isoviscous system (Ref. 4, Eq. 5) and
ethylbenzene at 7. = 20°C and AT = 100°C according to Eq. (22).
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observed retention R and A; Eq. (20) in turn relates / = Aw to «. Thus, if we
measure the retention ratio for a specific material, we may determine its
thermal diffusion factor «. This relationship between R and « is illustrated in
Fig. 6 for ethylbenzene with 7, = 20°C and AT = 100°C.

ZONE BROADENING

A perturbation of the parabolic velocity profile affects not only the zonal
retention but band broadening as well. The nonequilibrium contribution to
the plate height expression in FFF has been treated in detail for the case of
unperturbed parabolic flow (/5-17) and has the form

_ xwwd

D (23)

n

where the parameter x is a complicated function of A or R (IS, 16). An
approximation for x has been developed by Martin et al. (17); it is based on a
third-degree polynomial expression for the velocity profile with one adjust-
able parameter v:

Sefarn (S )mam (e ()
—=6{(1+v){— =1 +3v)|— |]+2v —>
v w w w

y

o
®
T

o
[}
T

o
N
T

RETENTION RATIO, R
o
N

O

1 1 _ 1
50 100 150 200

THERMAL DIFFUSION FACTOR, a

O

FiG. 6. Dependence of R on the thermal diffusion factor a for ethylbenzene at T, = 20°C and
AT = 100°C.
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The resulting equation for x is of the form (17)

2N F

- R(l ___efl//\) (25)

X

where

F=2A416(1 +v)—(1/X) — (4/X\) + 36v\*
— 6A(1 + 6v) + 18\e A1 + 10vN)]
+ 720°[(1 +v)® = 10(1 + 4v + 3vHA
+4(7 +69v + 90vHNE — 672v(1 + 31v)A]
+ 4464020\ — 72027V T — 20 +02
+2(5 —68v + 15N + 4(7 — 69y + 180v)A?
= 672v(1 — 3v)A* + 44640204 (25a)

and
A=12 e "M6vA —1)/(1 —e V'Y (25b)

In order to examine the effect on band broadening due to a thermally
distorted velocity profile, we generated a set of data from Eq. (13) describing
the velocity profile of ethylbenzene with 7. = 20°C and AT = 100°C. We
then fit this data to a third-degree polynomial by means of a least-squares
analysis. As seen in Fig. 7, the fit is quite good. This is also indicated by an
error of only 3.3% in the slope of the third-degree polynomial at the cold
wall. This precision may be improved by performing a weighted fit of the data
near the cold wall.

The expression for the nonequilibrium coefficient x given by Eq. (25) may
now be evaluated and compared to the isoviscous case. The comparison is
shown in Fig. 8. For a mildly retained material the skewed velocity profile
has a larger contribution to band broadening than the parabolic profile
whereas for a highly retained material the skewed velocity profile has a
smaller contribution to band broadening than the parabolic profile (not
obvious in Fig. 8). This apparent contradiction arises due to the influence the
slope of the velocity profile has on band broadening: The steeper the velocity
profile is over the area of the solute zone, the greater the band broadening of
the zone. At the cold wall the parabolic velocity profile is steeper than the
skewed profile. Thus a highly retained sample experiences greater band
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broadening in a parabolic flow profile than in the skewed profile. For a lesser
retained material the solute zone will begin extending into flow regions in the
channel where the distorted flow profile has the steeper velocity gradient.
Consequently, the distorted velocity profile will increase the band broad-
ening of a mildly retained material.

SUMMARY AND CONCLUSIONS

The temperature profile across a thermal FFF channel has been shown to
be accurately described by a polynomial in position coordinate x, where x
represents the distance from the cold wall. This profile is based largely on
empirical relationships between temperature and viscosity for various
solvents. These relationships make it possible to express the inverse
viscosities, i.e., the fluidities, of the solvents as functions of position
coordinate x in the channel. The velocity profile across the channel was then
found as the solution to the equation of motion of the fluid between infinite
parallel plates. The resulting expression for the velocity profile is a
polynomial in x, where the coefficients are evaluated in terms of known
experimental parameters. This evaluation may be carried out by simple
computer routines. (Information on computer routines is available from the
authors.) The distortion in the velocity profile induced by the temperature
gradient is demonstrated graphically for a set of typical experimental
conditions.

The impact of the skewed velocity profile on retention was then examined.
The solute was assumed to be exponentially distributed with respect to the
cold wall during fractionation. Although the exponential expression is not
exact, it is acceptable for moderately or highly retained species. Thus it was
possible to estimate the effect of the skewed velocity profile on retention for
different experimental conditions. The impact of this correction is illustrated
by comparison with retention calculated for the parabolic velocity profile.
The parabolic profile is characteristic of most forms of FFF.

The aim of sample characterization in FFF is to correctly describe the
field-induced solute distribution in the channel, since this distribution is
uniquely determined by the physical properties of the sample. In order to
accurately relate an experimentally observed retention to the appropriate
sample distribution, one must have access to an accurate velocity profile. It is
this primary need which prompted the current study. We have also examined
the implications of the skewed velocity profile on nonequilibrium zone
broadening in the thermal FFF channel.
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It will be the goal of future work to more accurately describe the sample
distribution in a channel under the influence of a temperature gradient. This
should provide an improved relationship between experimental retention and
the thermal diffusion parameters for the sample.
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